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Abstrnct--A theoretical method is given for the determination of the shape of two drops (bubbles) 
moving with constant velocities parallel to their line of centres in a quiescent viscous fluid. The 
Reynolds numbers for the motions within the fluids are assumed to be sufficiently small that the 
equations governing these motions are quasisteady Stokes' equations. It is also assumed that the 
maximum deviation of the interfaces from spherical form is small when compared with the radius of 
the "equivalent" spherical drop. The paper deduces the first-order pressure distribution exterior and 
interior to the droplets. Effects of fluid viscosities, capillary numbers and distances between the 
droplets are taken into account. Special attention is paid to the influence of a solid plane or solid 
sphere on the shape of a drop (bubble) approaching or receding away from the solid boundary. The 
obtained solutions may serve as a first iteration of an iterative procedure for determining more 
accurate flow fields, taking into account the deviation from sphericity of the deformed particles. 

I. INTRODUCTION 

The area of bubble and drop phenomena has continued to receive much attention from 
investigators in the fields of chemical and biomedical engineering and science. The majority 
of the works are fundamental in nature, but permit one to develop rational understanding of 
the many industrial systems and processes such as sedimentation, gas-liquid contacting, 
flotation, fermentation liquid-liquid extraction, spray drying etc. An excellent review 
summarising the current state of knowledge in this field in the case of low Reynolds number 
flow and pointing out the utifity of such knowledge in applications is given by Brenner 
(1971). 

The translation of a single liquid sphere was first treated independently by Rybczynski 
(1911) and Hadamard (1911). Interfacial tension acting on the interface between the 
immiscible fluids tends to deform it. If the motion is sufficiently slow or the particle 
sufficiently small, the droplet will in the first approximation be spherical. 

The investigations of the shape of a viscous drop settling through a fluid appear to be the 
most detailed treatment of a free surface. These studies allow the fluids on both sides of the 
free surface to exert shear forces as well as pressure forces. 

The problems associated with the shape of droplet undergoing distortion, when inertia 
effects are no longer negligible, were discussed by Taylor & Acrivos (1964) and Pan & 
Acrivos (1968). 

The motion of solid and liquid particles in a viscous medium at low Reynolds numbers is 
usually affected by the presence of rigid walls, free surfaces and adjacent solid particles or 
droplets. 

An approximate solution to the motion of a solid spherical particle approaching a solid 
plane for the case where the radius of the sphere is small compared with the instantaneous 
distance of its midpoint from the plane was provided by Lorentz (1907). An exact solution of 
the Stokes' equations for the steady axisymmetric motion of a viscous fluid, posed when two 
spheres translate with equal velocities has been obtained by Stimson & Jeffery (1926) using 
bipolar coordinate transformation. 

The first investigation of the behavior of a drop in shear flow was made by G. I. Taylor 
(1932), who stated the boundary conditions that must be satisfied at the drop surface, and 
found the velocity fields outside and inside a drop kept spherical by surface tension. The 
solution contained discontinuity in the normal stress at the drop surface. Taylor later (1934) 
found the deformation of the drop by equating the discontinuity in normal stress over the 
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drop that was spherical with the pressure arising from curvature and surface tension over the 
deformed drop. Cox (1969) considered the deformation of a drop in a time-dependent shear 
flow. The solution to the limiting case problem of a solid particle approaching a solid plane or 
free surface has been presented independently by Brenner (1961 ) and Maude (1961). Using 
Lamb's solution of the Stokes' equation Charley et al. (1965) found the radial migration of a 
liquid drop suspended in a viscous fluid between counter-rotating discs or near a plane wall. 
An analysis of the motion of a spherical droplet settling towards a plane surface or interface 
between two immiscible viscous fluids at low Reynolds numbers has been given by Bart 
(1968). Rushton & Davies (1973, 1978) and Haber et al. (1973) considered the relative 
motion of two fluid spheres falling along their line of centres. 

Recently, Leal et al. (1979, 1980, 1982a,b) have presented approximate analytical and 
numerical solutions to the problem of the motion of a solid sphere towards a nondeformable 
or deformable interface. O'Neill & Ranger (1983) have proposed an approximate solution to 
the problem posed when a rigid sphere normally approaches an interface between two 
immiscible viscous fluids. 

The present work is an investigation of the shape of a drop moving towards or away from 
a solid plate or another deformable drop. The fluids involved are homogeneous, incompressi- 
ble, Newtonian and have constant physical properties. The Reynolds numbers for the 
motions within the fluids will be assumed to be sufficiently small that the equations 
governing the motions are the quasisteady Stokes' equations. The boundary conditions are 
formulated on the hypothesis of no relative motion at the fluid-fluid interfaces and on the 
condition that the tangential stresses are continuous through the interfaces. For normal 
stresses we have supposed that any discontinuity in the normal stress at an interface is 
balanced by surface tension forces. The purpose of the paper is to find approximately the 
shape of the drops (bubbles) when the motion is slow and the maximum deviation of the drop 
interface from spherical form is small compared with the sphere radius. For this purpose the 
first-order pressure distribution exterior and interior to the droplets have been calculated. 
This does not appear to have been done before. 

2. FORMULATION OF THE PROBLEM 

Let us consider two liquid droplets moving along their line of centres with terminal 
velocities Uo and Ub, respectively, in an unbounded quiescent fluid. It is assumed that the 
droplets move with slow relative velocity, such that the inertia terms in the equations of 
motion can be neglected. 

The governing field equations are as follows: 
i) For the interior of droplet a 

~,v2Po = Veo, 

v .  v o - o .  

ii) For the interior of droplet b 

~t, v2Vt, - VP~, 

v .  Vb-O. 

iii) For the field exterior to the droplets 

~,.v2p,, - v P . ,  

v. v,-0. 

where Vand P are the velocity and the hydrodynamic fluid pressure including gravitational 
body force potential if appropriate and # is the fluid viscosity. 
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The boundary conditions are as follows: 
a) The tangential and normal components of the velocity vectors inside and outside of the 
droplets are continuous on the interface 

V~,). ~-o_ Vo). To, 

~ ) .  ~o _ ~ .  ~o ( j  - a, b) 

V~,). Ko_ ~ .  K °, 

where R °, ~-o denote, respectively, a unit vector normal to and tangent to a meridian curve of 
the interface; Uo and Ub are the velocities of the drops; the subscripts e and i indicate a 
property exterior or interior to the droplets. 
b) The tangential components of the stress vectors of the fluids interior and exterior to the 
droplets are continuous through the interface 

c) The normal component of the stress vectors have a discontinuity which is proportional to 
the product of the surface tension, and the mean curvature of the interface (Scriven 1960) 

- _ .  - ~ j  + , 

where R~ and R 2 a r e  the principal radii of the deformed interface. 
d) Far from the droplets the flow field is unperturbed and we can assume, without any loss 
of generality, that the velocity vector vanishes 

~ )  ~ 0 far from the droplets. 

e) Inside of the droplets the velocity vector is finite 

~ )  - O(1) inside of the droplets. 

For axisymetric motion the velocity components in cylindrical coordinates (f, z, ~o) may 
be expressed in terms of the Stokes' stream function 

1/~ - 7. 8 Z ,  V~ TS~" V ~ - O .  

Hence the equations of the motion may be written as 

E ~  - 0, 

where 

8 2 l 8 8 2 

E2 ~ o~ 2 T &r + 8z 2 " 

[1] 

3. A M E T H O D  FOR S O L U T I O N  O F  T H E  P R O B L E M  

The solution is initiated by assuming that the droplets are spherical and solving the flow 
fields. Subsequently, the geometry of the interface is solved for these flow fields. Let us 
denote the radii of the droplets by a and b. With b as a typical geometrical length Ub as a 
typical velocity and p(OU ~ as a typical pressure we will have the following dimensionless 
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parameters, the Reynolds number of the problem Re - p¢')Ubb//~ ~°, the Weber number for 
each droplet We* - p{°bU~/o, ,  We b - p{~bU~/Ob and Ko = u{,°/~ ~'~, Ko =/~{b'~//~ ~̀ ~. Then for 
the dimensionless velocities of the droplets we shall have 

V = ~ a t  7 ~ 7° 

1 a t  77 = 7b, 

where the sign depends on the direction of their movement; 7° and 70 are described further 
o n .  

Due to the specific geometry of the two fluid interfaces it is convenient to use bispherical 
coordinates (/i, 7, ~o). We take the conformal transformation 

Z - -  
c sh7 c sin 

r 
ch7 - cos ~ '  ch7 - cos / j '  

where 0 - /~  <.. w, -oo < 7 < ~, 0 < ¢ < 2 r  and c is a positive constant. The coordinate 
surfaces 7 - 7. > 0 and 7 - n0 < 0 are nonintersecting spheres whose centres lie along the z 
axis and 7o - cth -~ do/c, 7b -- ch -~ do, Here do and d0 are the dimensionless distances from 
sphere centres to the radial plane z - 0. The value 7o - 0 corresponds to a sphere of infinite 
radius and is equivalent to the entire plane z - 0. 

The relationships between the velocity components V~, V, and the stream function ff are 

( c h 7  - B)2 0~ 
c 2 0 ~ '  

(ch7 - ~)2 0~ 

c 2sin~ 071' 

where/~ - cos ~. A solution of [ 1] in bipolar coordinates, suitable for satisfying boundary 
conditions was given by Stimson & Jeffery (1926) 

¢~ - (ch7 - ~)-3/2 ~ U.(7) • V.(B). [2] 
n- I  

Here 

U,(7) - A , c h ( n  - ~/2)7 + B : h ( n  - I/2)7 + Cnch(n + 3/2)7 + D,sh(n + 3/2)7 

and V.~)  is a function related to Legandre polinomials via the relation 

V.(B) - P._ ~ (~) - / ' . + , ( ~ ) .  

The constants A,, B,, C, and D, are determined from the boundary conditions a), b), d) and 
e ) .  

3.1. Calculat ion o f  the  pressure  

Since our aim is to find the shape of the droplets we shall use the normal force balance 

We + ' 
[3] 
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w h e r e  

p(~) . _p~,) 2 ch~._-- /][_~ (chn; /])2 oN," ch .~j- ~c,N,____~ .)] 
Re c 0/] ' 

2K ch~ - / ]  [ 0 (chT1 -/])2 o~b0, 

~ L~ : o-~ - 
~__~o ch'~-/]O~ ' ~ ] c  ~ 

[4] 

and P('), pO) are dimensionless pressures outside and inside of the droplets, 
The pressure of the fluids exterior and interior to the droplets can be calculated from 

equations 

: jp (e )  ch~ - -  /] ¢~(E2~ 'e)) 
0~ c Re 0/] ' 

OP C'~ chn - /]  oCE2~ "~) 
0/] - c R e ( l  - / ] 2 )  O~ 

[s] 

01/0 ch~ - / ]  K a(E2~b(~)) 
c Re 0/] ' 

apU) ch~ - / ]  O(E'~b(°l 
K x ~ i 

0/] c Re(1 -/]2) 07 

[61 

where 

,. c,~_, {~[,c,~_ ~, ~] + ~i_ :, :, [~ch,-,> :, ]}. 

According to [5] and [6] the pressure P is a harmonic function, i.e. 

V2P - 0 

and can therefore be expressed in terms of Jeffery's (19 t 2) solution of Laplace's equation in 
bipolar coordinates: 

"?'he ~ o:.'~ ch n + ~ ,7 + ~'~ sh n + P.(/]) + r~% [7] 

[8] 

where IIc') and II '° are arbitrary constants. The coefficients .~), ~'), a~ ° and ~o are to be 
determined by making use of equations [5] and [6]. 

According to Stimson & Jeffery (1926) 

3 ~h~ + 3~ u.] , rd'v. 2 dv.]/ 
[9] 
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In order to separate the variables in [9] one can use the following recurrence relations 

din n(n - 1) V~_l (n + 1)(n + 2) V~+l, 
(1-/~)2 dB 2 n -  1 - 2n+ 3 

n - 1  n + 2  
/~V. 2n---~ V._, + 2n +-"-'--3 V.+,, 

d2V. 
(1 - / ~ 2 ) - ~ + n ( n +  1)V.-O. 

Then after somewhat lengthy algebra, [9] can be written in the form 

1 
[10] 

where 

2n (2n+  3) . 2 ( n +  1 ) ( 2 n -  I) C._, 
a ~ - - ( 2 n -  1 ) A . + ( 2 n + 3 ) C . +  ~ n + ' l  " % + ! -  2 n +  1 

b.- -(2n - I)B. + (2. + 3)D. + 
2n(2n + 3) 2(n + 1)(2n - 1) 

B.+ l -- D._ l 
2n + I 2n + I 

Substituting [7] and [8] into [5] and [6] and making use of [10] one can find 

.-~1" 2 m + l  2 n + l  ] 
o/n - m~l [m- ~ ~ + 1) b ~ +  n b. + a o ,  

, - , r  2 m +  1 2n+ 1 ] 
/~"- ~.I [m'~ + 1) a" + n a. +/~o. 

Furthermore, the coefficients a(o ') and/~(o ") are readily obtained by the condition that the 
pressure is finite at infinity. 

"' ] 
m(m + I) + n b~') ' 

n-I ] 
/~(,)__li,~m[m~_ l 2 m +  1 a~' 2 n +  1 

m(m + 1) + ~ n  a(') " 

Let us consider the regions inside of the droplets. From the boundary conditions for the 
stream function it is easy to deduce that p(o is finite as ~ --* ± ~ and is given by 

c 3 Re k(k + 1-----~) b~a + 
2 n +  1 
n b(n 0] x e t(n+I/2)'J Ps(~) + lift). 

The sign " + "  corresponds to ~ < O, and the sign " - "  corresponds to ~ > O. If  we take into 
account the gravitational body force we obtain 

p(,) 
,, + ,h n+ ,7 

gb sh~ 
- ~ C c h , 7  - :3 

+ I'[ (e), 
(10 
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p(O 
c 3 Re 

gb3, c sh~ K ~.., a:') e ±('+'/2)+ P,,(3) - ~ c~ -- 3 - -  + II (0, [12] 

where 

p(e) 

"Ya,b -- 
p(*) 

3.2. Equations for the shape of the droplets 
By using the equations [2], [4], [11], [12] and the expansions 

1 
(ch~ -/3) '/2 - "f~ ~ e±(n+l/2)+ Pn(/~)' 

n-0  

shn 
(ch~-- ~ ) 3 / 2  ffi =[: ~ / 2  ~ (2n + 1) e±(n+l/2)~P.(3) , 

n-0 

we obtain 

ch~h-'~--~- i~ {~.o [K~')e±('+ 3 Re 

(') . ( ' )  n + : , 7 -  sh n+ ,7 

gb 
U~ ¢4 Re(1 - ~) ~r~ [_*(2n + 1)] e±('÷u2)~ 1 P~(B) 

+ 2(1 - K) (2n + 1) sh~ U(~ ) + ch~ P.(~) 

2 .  _ 1 .,,,c., f'* t-J n -  I + 
n-2 2 dr  

+ 
.-o 2 dr  

2(2"+ 1)(n2+n- 1) e±(~+l/2)~)] } 
- 2-n 7_ 1) (2n + ~ P'(~) 

-(II(+'> - KII(">)c3 Re +f2 ~.o e++<"+'/2)'+ P.(l$)} [,.,.+ +. 

3 n(n-  1) ] 
- -  - -  +- 4 - - ~  Vc'2 2n 1 e±(n-3/2)'7 P'(fl) 

J 

3 ( ( n + 2 ) ( n +  1) 
- -  - -  - ~ VC2 e±(n+~/2)n 2n + 3 

[13] 

The shape of the fluid interfaces may be represented by 

~" - 7/0 + H(~), 

where max# I H(3) I < 1 and 7/o - ~°~. Since max B I H(fl) I < 1 then (Aris 1962) the sum of 
the principal radii of the curvature can be written in the form 

1 1 1 ._d_d [ I Z.~ 2 
[ 1 4 ]  

Here the upper sign corresponds to the case when 7/o > 0 and the lower sign to To < O. 
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Upon introducing the obtained results in [13] and [14] into equation [3] one finds the 
following ordinary differential equation 

1 {(chr/o- 0)3 _~[. 1 -  02 d H  
W e . c  (chr/o'.S-~)2"-~] +2HchTl°} 

Ka~.')e'("+l/2)~ - ac.') ch n + ~ r/ - Oc.') sh n +  r~ 
c 3 Re 

3c 4 Re 1 ] 
+ 2 q~--~ ro 3 F°(--4"(2" + 1))e *°'+u2)'~] P,,(0) 

dr/ //.(8) 
~-~[ 2n - 1 .irr(,) 

+ 
.-2 2 dr/ 

2n + . ,  "~n+t + 
.-o 2 dr/ 

3 n(n + 1) e±(n_3]2), ] 
- -  - - "  +- -ff--~ Vc2 2n--  1 1".(8) 

J 

3 [ ( n + 2 ) ( n +  1) 
I i ± ~ Vc2 [e±tn+5/2)~ 2n + 3 

2(2n + l)(n 2 + n - 1) P.(O)} 

- (IIc`) - KII(') Wec] c R e  ~ 

[151 

Here it was taken into account an overall force balance 

gb(1 - 3') 4 1 
u l  3,~ ~o ~ Fo, 

where 

fa 

TO 
L, at 7 / -  ~/b 

and FD -- drag/b2oc')U 2 is the dimensionless drag on the drop. In our case (Stimson & 
Jeffery 1926) 

2~ 

Re 

1._~ ~ 
• -~.. .  ( A . ± B .  + C.+-D.),  

C n-I 

where the upper sign corresponds to the case when r/o > 0 and the lower sign to r/o < 0. 
The function H(0)  is to be determined from [ 15] subject to the following conditions 

f_~ H(0) d0 , (c~-~-o : . -~ )  3 - 0 at maxp I H(#) I ~ 1. [16] 

f_, H(O) d# n (c~o  " ~ ) 4  - 0 at ma× [ H ( B ) .  I ~ 1. [17] 

The equation [ 16] represents the condition that the characteristic length b has been set 
equal to the radius of the "equivalent" spherical drop while [17] represents the condition 
that mass centre of the drop is preserved. 
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A particular solution of the equation 

(chT/o_fl)3~__~[ 1 - ~  2 dH(fl)] 
'(ch~o - /3 )2  ~ "j + 2n(B)ch~o - 0 [18] 

has the form 

1 - ~ch~o. [ 19] 

Hence we can write down the solution of [15] in the form 

n ( ~ )  - ~ e - J  (ch~o - t~) '/' A (ch~o - ~ r / ,  + .-o [20] 

where A is an arbitrary constant and 

H, - H i  t) + IIH~, 2), II - H (° - KII t2) 2shT/° 
Wec 

We will note that the sum 

W e  (ch~o - ~)3/2 ~ HnPn(~) 
Re ~ ,-o 

is a particular solution of [15] and the constants A, II are determined by the conditions [16] 
and [17]. Substituting [20] into [16] and [17] we obtain for A and II 

(Hi,  ') + IIHtn2))e ±(n+'/2)'° - -  O, 
n-O 

x~ ~" (H~ I) + IIH~2))(2n + 1)e *¢'+t/2~'° - -A .  
n-0  

Substitution of [20] into [15] and the equation of the coefficients of P,(B) yields the 
following recurrence equations to determine the coefficients H.: 
i) For n - 0 

- ~ H2 + ch*loH, - - 2ch2~/o Ho 

7/o 7/o 
- Ka¢oOe "'°/2 - a t  ") ch ~ - ~¢o 0 sh -~ + - -  

3c 4 Re 1 
2 ~ f d F"e~'~2 

3 d V i  ") 
+2(1 - K )  - ~  ~ -  

[21] 

_ ~ ± ~ Vc2( e ' m "  _ e,,~2) + I I e  ~ 2 .  

ii) For n - 1 

3 7 
- ~ 1t3 + 4ch,loH. - ~ H, + ch,loHo 

3 9c 4Re 1 F e ~312~0 
- Ka[Oe "3/2w° - a[ ") ch 3 To - /3~ ") sh ] To + 2 x/2 f ~ o + 2(1 - K) [22] 

. {3 ( shroUd ' )  d U ~ " l S d U ~ J 3  ['6 .,,~,2 6 .~,./2"~ 
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iii) For n - 2 

-3H, + 9chv,H, -(~+4ch$,)H,+4ch~~,-~H._Ka!“e*‘i~-aj”eh~~~ 

]231 

+ lIe*s/2N. 

iiii) For n 2 3 

_ (n + m + 1) 
4 Hn+2 + (n + 1 )2ChoK+, 

]241 

n2+(n+ 1)2+9 
- + (n l)(n + 2)ch2tl, 1 H. - 

4 
+ n2chq0H,,_, 

- “‘“; ‘) H,,_, _ Ka”’ e”“+‘/2’” _ n 4’eh(n+~)n,-8:‘)sh(n+t)n. 

3c4 Re 1 + - - F,(2n + 1) e*(n+‘/2)r 
dU”’ 

2 II&T; 
; shtl,U:’ + chll, n 

dtl 

2n - 1 dUE, 2n + 3 dU:+, 3 n(n --- ---‘4JI -[ vc2 - 1) 

2 d7 2 & 2n 
e*(“-3/2)s 

- 1 

Wn + W 
2 

+ n - 1) ee(n+l12)m + (n + 2)(n + 1) - 
(2n - 1)(2n + 3) 2n + 3 

e*(“+5/2)” II + ne*cn+mw* 

3.3. A solution of the recurrence equations 
On the base of the upper formulas and the following algorithm for the successive 

calculation of the coefficients H,,, H,, H2, . . . , H,,, . . . it is possible to obtain the deforma- 

tion of the droplets, which is the main purpose of the present paper. 
For the sake of brevity let us denote the sum of the members which depend on the knoivn 

function # and the expression which contains the unknown constant II in the right side of 
[21]-[24] by !‘$ and FIT, respectively. Then we obtain the following set of recurrence 
equations for H,, 

-‘/z H2 + chtl,H, - (s/z - 2ch2~,JH0 - F&, + FII,,, 

-‘/2 H3 + 4chll,H, - 7’2 H, + chq&, - FJ/, + Fl-I, 

-3H. + 9&J& - (“/‘z + 4ch2v0)H2 + 4ch@, - ‘/f2Ho - Fq2 + FI12 

_ (n + 2)(n + 1) 
4 Hn+2 + (n + 1)2chdL+l 

1251 

WI 

[271 

n’+(n+ 1)2+9 - 
4 

+ (n - l)(n + 2)ch2v0 
lH 

,, WI 

+ n2ch~dj,_, - n(n; ‘) H,,_2 - F$, + FII,. 

Since the function H(B) in [20] is limited at @ = 1 it follows that {H,},, - 0. 
Consequently the unknown coefficients H. have to satisfy recurrence formulas [25]-[28] 
and the condition lim,, H. - 0. 
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Let us consider the recurrence equation [28]. The right-hand side of this equation has an 
order O ( e - ~ ) .  After dividing [28] by (n + 2)(n + 1) therefore for sufficient large n > N 
shall have 

-V4 H.+2 + ch~oH.÷~ - (~/z + ch2~o)H. + ch~oH._,  - ~/,H._2 - O. [29] 

For analytic purposes it is convenient to separate the infinite set [25]-[28] into two 
parts 
i) finite system for n - 0, I, 2 . . . . .  N 

ii) infinite system for n = N + I, N + 2, N + 3 . . . .  
Using the condition {H,}~.~+~ -~  0 as n -~  ~ one can solve the equations [29] expressing 

the coefficients H~v_~, H~, H#+~, H#+~ . . . .  by means of two constants a and b. Substituting 
H#_~, H~, HN+~, H~v+2 into [25-28] we can calculate the constants a, b and the coefficients 

1to, H , ,  t t2  . . . . .  HM-2. 

Since the coefficients of system [29] are constants the solution of this system will satisfy 
the equation: 

X ~ - 4ch~oX 3 + (2 + 4ch2~o)X 2 - 4ch~oX + 1 l O. 

On solving this equation one finds 

X t . 2 f e  ~ and X3,4-e-% 

Consequently the solution of the system [29] has the form 

H .  - (a  + bn)e  -'d'~ + (c + dn )e  ~ at n ~ N - 1. 

Then, in view of the condition H,  --~ 0, as n --~ oo we obtain d - c - 0. On substituting H~+2, 
H~+j, H~ and H~_~ into [28] and solving the resulting algebraic equation we find H~v_2 as a 
function of the constants a and b. Proceeding in this manner we can get from [27] and [28] 
all the coefficients H~_3, H~v_4 . . . . .  H2, H~, Ho. Furthermore, the supplementary unknowns 
a and b are found from [25] and [26]. The equations [25] and [26] form a linear-dependent 
system but since we seek a particular solution we can put a - 0. 

It is noteworthy that in the same way one can find a solution of the homogeneous 
recurrence equations [25]-[28], which will be a solution for the homogeneous differential 
equation [18]. Comparing this approximate solution with exact solution [19] we obtain a 
concurrence to 10 -~, which shows that the proposed method has a good accuracy and is of a 
great promise. 

V ffi -1 

J . ' I J I J r l r r l r r .  I J 1 r r l r l r r r l r r r r r ~ r 1 . . r w . . . . . . r r s l r r ~ w ~ . . . r .  r f . ~ r ~ 1 .  

d=2 d ' 1 . 5  d = t .3  

Figure I. Liquid drop appr~ching  a solid plane for K - 0.5, W e / R e  - 0 .I ,  and different values of 
the separation distances: d - 2, d - 1.5, d - 1.3. 
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! i ~ i  i I ~  i ~ i i  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 1 / l l l l J  I l l  I i i  
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Figure 2. Liquid drop receding away from the solid plane for K - 0.5, W e / R e  - 0.1 and different 
values of the separation distances: d - 1.3, d - 1.5, d - 2. 

4. N U M E R I C A L  R E S U L T S  F O R  D E F O R M A T I O N  O F  T H E  F L U I D  P A R T I C L E S  

To illustrate the usefulness of our general solution given in the previous section we shall 
give some results in three different cases: 

4.1. The shape of a drop moving towards or away from a solid plane 
Consider, at first, a particular case of a drop approaching or receding away from a solid 

plane. We recall that fluid particles at low Reynolds number in infinite media tend to be 
spherical. Figure 1 represents the wall influence over the shape of a drop approaching a solid 
plane for K - 0.5, We/Re - 0.1 and different values of the separation distances: d - 2, d - 
1.5 and d - 1.3. It is seen that as the separation distance d decreases, the presence of the wall 
causes a droplet deformation. With decreasing d the shape of a large part of the drop 
interface approaches a spherical form, while the front region becomes flat and a "dimple" 
between the fluid particle and the solid plane comes into view. Figure 2 shows the wall 
influence over the shape of a drop receding away from the solid plane for K - 0.5, We/Re - 
0.1 and different values of the separation distances: d - 1.3, d - 1.5 and d - 2. When the 
fluid particle is moving away from a solid plane and the separation distance between them is 

504 

20 

tO 

Figure 3. The distribution of Re I ~ w  J on the drop (bubble) interface for d b -  1.5 and different 
values of the viscosity ratio: (1) K - O, (2) K - 1, (3) K - 10. 
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Figure 4. The distribution of Re ] ~ ' ,~  I on the drop (bubble) interface for K - 0.5 and different 
values of the separation distances: (1) ds  - 1.3, (2) db - 1.5, (3) db - 2. 

small an elogation is occurring in the vertical direction to yield approximately prelate 
ellipsoid shape. It is evident that in this case there is a sensitive influence of the normal stress 
differences, AP. ,  pulling the drop downwards. The distribution of [ A / . [  on the drop 
(bubble) interface is given on figure 3 for d - 1.5 and different values of the viscosity ratio: 
K - 0, K - I and K - 10. It is seen that the normal stress differences increase as the viscosity 
ratio increases. Figure 4 illustrates the relationship between I AP.  [ and/~ - cos//over the 
drop interface for K - 0.5, and different values of the separation distances: d - 1.3, d - 1.5 
and d - 2, 

One can see that the normal stress differences [ A / . [  decrease as the separation 
distances increase. They take maximum values over the front part of the drop and minimum 
values over its side part. When the drop is moving towards the solid plane they are directed 

21-• vo =0 

2 JT 

I Vb= I 

Figure 5. Solid spherical particle approaching a deformable drop for K, - 1.5, W e / R e  - 0.16, I-, - 
1.5, do - 1.7 and 1"b - I, db - 1.5. 
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Figure 6. Solid spherical particle receding away from a deformable drop for Ko - 1.5, W e / R e  - 0.12, 
• . - 1.5, d.  - 1.7 and ~b - I, db - 1.3. 

inward to the particle centre and when the drop is receding away from the solid plane they 
are directed outward to the particle, i.e. in the first case normal stress differences contract 
the drop and in the second one they stretch the fluid particle. 

For assigned values of d and K the sign of the normal stress differences is changed 
depending on the movement direction of the drop. 

4.2. A solid spherical particle approaching or receding from a deformable drop (bubble) 
When a solid particle is approaching or receding from the deformable fluid particle its 

shape is changing because the excess pressure inside the drop is increasing. In figure 5 we 
demonstrate the influence of a solid sphere approaching the drop over the shape of the fluid 
particle for l"b - 1, db - 1.5 and Ko - 1.5, W e / R e  - 0.16, To - 1.5, do - 1.7. 

The results for the interaction between a moving solid sphere and a standing drop at ~'a - 
1.5, do - 1.7, Ko - 1.5, W e / R e  - 0.12 and rb - 1, d b -  1.3 are shown in figure 6. Figure 7 

presents how a settling solid sphere influences over the shape of a rising bubble (Ta - 1, do - 
1.19, ~'b - 1, d b -  1.19, Kb - 0, W e / R e  - 0.11). It is interesting to note that the settling 
particle sucks up the rising bubble and changes its shape greatly. 

4.3. The relative motion of  two deformable fluid particles 
As must be expected (Taylor & Acrivos, 1964), when the distance between the droplets 

tends to infinity there is no deformation of the fluid-liquid interfaces for low Reynolds steady 

~ Ivb--4 
I 2 

Figure 7. A relative motion of a solid particlc and a bubble in opposite directions for K. - 0, 
W e / R e - 0 . l , f . -  l , d . -  1 .2and~ 'b -  l , d b -  1.2. 
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F igure  8. A re la t ive  mot ion of  two deformable  drople ts  for K.  - 1, W e ' / R e  - 0.3, r .  - 1, d.  - 1.34 
and Kb - 0.5, W e b / R e  - 0.28, rb -- 1, db -- 1.34. 

flow. For droplets travelling in the opposite direction and approaching each other there are 
two dimples. (See figure 8, where lr, - 1, do - 1 .34 ,  W e ° / R e  - 0 .3 ,  Ko - 1 and ~b -- 1, db -- 

1.34,  Web/Re - 0.28, Kb -- 0.5). The dimple formation mechanism is not well understood. It 
is complicated because of a coupling of bulk and interfacial fluid dynamics and because the 
drop's initial kinetic energy should be taken into account when describing the interracial 
tension gradient mathematically. Unfortunately, the suggested theory does not permit to 
obtain quantitative results for the shape of two approaching drops when the separation 
distance between them is so small that the hydrodynamic film is formed. (Lin & Slattery, 
1982.) In figure 9 we plot the shape of two fluid particles moving away from each other for 
r, - 1.5, do - 1.9, We*/Re - 0.24, K b = 1.5 and rb -- 1, d b -  1.55, Web/Re - 0.36, K b - 

1.5. 
It is seen from [20] that the shape of the fluid particles depends explicitly on the capillary 

number 

We U~, C') 
Co= Re o 

One notes that for separation distances of order O [1], when interracial tension o 
decreases the degree of the drop deformations increases and for large o the drop shape is 
nearly spherical. 

At the same time figure 10 shows that there are such values of the given parameters (to - 
1.5, d, - 1.7, We°/Re - 0.54, K, - 0.5 and rb -- 1, d~ - 1.34, Web/Re < 300, Ks - 15) that 

' [ va : t3  

2 

Vb=-I 

Figure  9. A relat ive mot ion of  two de fo rmab le  drople ts  for K,  - 0, W e ' / R e  - 0.24, ~'. - 1.5, d .  - 1.9 
and  kb - 1.5, W e b / R e  - 0.36, rb - 1, d ,  - 1.55. 
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Figure 10. Two fluid drops moving in the same direction for K, - 0.5, T, - 1.5 and K) - 1.5, ~b - 1, 
but  for different values of d,  and db; 1) at d,  - 1.6, d b -  1.2, W e ' / R e  - 0.28 and W e t / R e  - 1.6, 2) at 
d,  - 1.75, d~ - 1.34, W e ' / R e  - 0.54 and any value of Wet /Re ;  3) at  do - 1.9, d b -  1.5, We° /Re  - 

0.91 and W e t / R e  - 1.6. 

the flow around the second drop may be like a drop in Stokes' unbounded flow, i.e. without 
any drop deformation. 

Figure 11 presents the shape of two droplets moving in the same direction for ~-, - 1, da - 
1.19, We ' /Re  - 0.98, K, - 0.5 and ~'b "~ 1, d b -  1.19, Web/Re - 0.98, Kb - 0.5. In this case 
the first drop sucks up the second one and as a result they have completely different shapes. 

All pictorial material shows that the degree of deformation increases as the viscosity 
ratio K decreases. Finally we shall note that the driving force in all considered systems is the 
gravitational body force F, which depends on the gravitational accelaration g, the density 
ratios of the considered fluids %.b and so on. 

5. C O N C L U S I O N S  

A general first-order theory for determination of the shape of two droplets moving in a 
quasisteady Stokes' flow is presented. From a known stream function (Rushton & Davies 
1973) the pressure distribution exterior and interior to the droplets has been calculated. The 
resulting solutions may be employed to predict the shape of the drops as a function of the 
viscosity ratios and the separation of the particles. When the distances of separation between 
two approaching or receding particles are not large the deformation takes place nevertheless 
whether the particles are gas bubbles or liquid droplets. In addition the proposed method 

1 2 ~" 

Figure 11. Two fluid drops moving in the same direction at Ko - 0.5, We° /Re  - 0.98, ~'o - 1, do - 1.2 
and Kb - 0.5, Web/Re - 0.98, ~'b - 1, d b -  1.2. 
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allows to calculate the shape of a deformable drop (bubble) in some limiting cases. Two 
special cases may be worthy to mention in this respect. These are a drop (bubble) 
approaching or receding away from a solid plane and the relative motion of a drop (bubble) 
and a solid spherical particle. 

It has be, on shown that when a fluid particle is moving away from a solid plane an 
elongation of the drop shape is occurring in the vertical direction to yield approximately 
prelate ellipsoid. Furthermore, a settling solid sphere changes greatly the shape of a rising 
bubble. 

As expected, when two fluid particles are moving in opposite directions and the 
separation distance between them is small enough the so-called "dimple" is coming into 
view. 

The present analysis shows that when the interfacial tension decreases the degree of the 
drop deformations increases and for large interracial tension the drop shape is nearly 
spherical. 

Further tasks are following: 
i) Application of the method to the problem of a slow motion of a drop (bubble) towards a 

deformable fluid-liquid interface. 
ii) Extension of the method to the three-dimensional problem of a quasisteady movement of 
a fluid particle parallel to a deformable fluid-liquid interface. 

Work on these tasks is currently in progress. 
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